

Why did the Java developer wear glasses?

Because he couldn't see sharp.

 Lowering

Steven Giesel // .NET Day Switzerland 2023 // How to misuse sharplab.io for a whole talk!

What is it and why should I care?

http://sharplab.io

Question: What does these two have in common?

Answer: Neither of them are known in IL code!

 Motivation

Performance

"Understand one level below your normal abstraction layer." -Neal Ford

 Motivation

Performance Bugs

"Understand one level below your normal abstraction layer." -Neal Ford

 Motivation
"Understand one level below your normal abstraction layer." -Neal Ford

Performance Bugs Fundamentals

foreach var

lock

for

async/await

yield

LINQ
query syntax

switch expressions

stackalloc

anonymous lambdas

anonymous classes

record (struct)

?? / ?.
pattern matching

?: ternary
operator

Blazor/Razor Components

using I(Async)Disposable

ValueTuple naming

Extension
methods

using static directive

collection expressions

collection initializer

Object initializer
Target type new expression

Auto properties

Expression Bodied members

??=

Property Initializer

nint/nuint data types

^ Index from End operator

Default
Interface implementation

partial methods

Pikachu

Charizard

const string “+” concatenation

Mew

params keyword

volatile

Range (..) operator

throw statement

string literals

Local functions

Overload Resolution

Top-level statement

events

And the most important keyword
of all time

dynamic

What is “Lowering”?

What is “Lowering”?

Compiling

IL
(Intermediate Language)

Translating one language to another (lower) language

What is “Lowering”?

Compiling

IL
(Intermediate Language)

Translating one language to another (lower) language

Translating high level features to low level features in the same language

Lowering

What is “Lowering”?

• Another name you know for that is “syntactic sugar”

• Or “compiler magic”

• Lowering is part of the whole process, when you compile your C# code

into an assembly (IL code)

Benefits of “Lowering”

Optimization

Benefits of “Lowering”

SimplicityOptimization

Benefits of “Lowering”

Compatibility
/ Consistency

SimplicityOptimization

Benefits of “Lowering”

Compatibility
/ Consistency

SimplicityOptimization Compiler

What is “Lowering”?

Fly

Move quickly through air

What is “Lowering”?

Fly

Move quickly through air

What is “Lowering”?

Horizon

Line where sky meets land

What is “Lowering”?

Line where sky meets land

<code />

Let’s start easy - var

var myString = "Hello World";

Console.Write(myString);

string myString = "Hello World";

Console.Write(myString);

Gets lowered to

• Easy one, var does not exist and gets resolved to its concrete type

• That is called type interference (the ability to deduct the type from the context)

What is the output of the following code snippet?

A. 1,1,1,1

C. 1,1,1,2

B. 1,2,1,2

D. 1,2,1,1

What is the output of the following code snippet?

A. 1,1,1,1

C. 1,1,1,2

B. 1,2,1,2

D. 1,2,1,1

Expression member VS get w/ backing field
public class DotNetDay
{

private static int a = 0;
private static int b = 0;

public int ExprCounter => ++a;
public int GetCounter { get; } = ++b;

}

public class DotNetDay
{

private static int a;
private static int b;

[CompilerGenerated]
private readonly int k__BackingField = ++b;

public int ExprCounter
{

get { return ++a; }
}

public int GetCounter
{

[CompilerGenerated]
get {return k__BackingField; }

}
}

• Bodied member getter will call the function every time

• With “only” the backing field - we only initialize once

Gets lowered to

foreach array

var range = new[] { 1, 2 };

foreach(var item in range)
 Console.Write(item);

int[] array = new int[2];
array[0] = 1;
array[1] = 2;
int[] array2 = array;
int num = 0;
while (num < array2.Length)
{
 int value = array2[num];
 Console.Write(value);
 num++;
}

• There is no collection initializer anymore

• There is no foreach anymore in the lowered code

• Translated into a while loop

• Also for loops get lowered to a while loop

Gets lowered to

foreach list

var list = new List<int> { 1, 2 };

foreach(var item in list)
 Console.Write(item);

List<int> list = new List<int>();
list.Add(1);
list.Add(2);
List<int>.Enumerator enumerator =
 list.GetEnumerator();
try
{
 while (enumerator.MoveNext())
 {
 Console.Write(enumerator.Current);
 }
}
finally
{
 ((IDisposable)enumerator).Dispose();
}

Gets lowered to

• Still no foreach in sight

• We are using Enumerators with (MoveNext and Current)

• Try-Finally block as Enumerator inherits from Disposable

using and async/await

Task<string> GetContentFromUrlAsync(string url)
{
 // Don't do this! Creating new HttpClients
 // is expensive and has other caveats
 // This is for the sake of demonstration
 using var client = new HttpClient();
 return client.GetStringAsync(url);
}

• Let’s have a look how using works to understand what might be an issue
here

using and async/await

Task<string> GetContentFromUrlAsync(string url)
{
 // Don't do this! Creating new HttpClients
 // is expensive and has other caveats
 // This is for the sake of demonstration
 using var client = new HttpClient();
 return client.GetStringAsync(url);
}

HttpClient httpClient = new HttpClient();
try
{
 return httpClient.GetStringAsync(url);
}
finally
{
 if (httpClient != null)
 {
 ((IDisposable)httpClient).Dispose();
 }
}

Gets lowered to

• using guarantees* to dispose via a finally block

• The finally block gets executed after return

• This will dispose the HttpClient and therefore the awaiter of our call will be
presented with a nice ObjectDisposedException

* If you don’t pull the plug out of your PC, get hit by a meteor or kill it via task manager

Eliding await
try
{
 await DoWorkWithoutAwaitAsync();
}
catch (Exception e)
{
 Console.WriteLine(e);
}

static Task DoWorkWithoutAwaitAsync()
 => ThrowExceptionAsync();

static async Task ThrowExceptionAsync()
{
 await Task.Yield();
 throw new Exception("Hey");
}

• The “not” awaited method (DoWorkWithoutAwaitAsync) is not part of the
stack trace

Output

Eliding await
try
{
 await DoWorkWithoutAwaitAsync();
}
catch (Exception e)
{
 Console.WriteLine(e);
}

static Task DoWorkWithoutAwaitAsync()
 => ThrowExceptionAsync();

static async Task ThrowExceptionAsync()
{
 await Task.Yield();
 throw new Exception("Hey");
}

• No await -> no state machine

gets lowered to

[System.Runtime.CompilerServices.NullableContext(1)]
[CompilerGenerated]
internal static Task <<Main>$>g__DoWorkWithoutAwaitAsync|0_0()
{
 return <<Main>$>g__ThrowExceptionAsync|0_1();
}

[System.Runtime.CompilerServices.NullableContext(1)]
[AsyncStateMachine(typeof(<<<Main>$>g__ThrowExceptionAsync|0_1>d))]
[CompilerGenerated]
internal static Task <<Main>$>g__ThrowExceptionAsync|0_1()
{
 <<<Main>$>g__ThrowExceptionAsync|0_1>d stateMachine

= default(<<<Main>$>g__ThrowExceptionAsync|0_1>d);

 stateMachine.<>t__builder = AsyncTaskMethodBuilder.Create();
 stateMachine.<>1__state = -1;
 stateMachine.<>t__builder.Start(ref stateMachine);
 return stateMachine.<>t__builder.Task;
}

Eliding await
try
{
 await DoWorkWithoutAwaitAsync();
}
catch (Exception e)
{
 Console.WriteLine(e);
}

static Task DoWorkWithoutAwaitAsync()
 => ThrowExceptionAsync();

static async Task ThrowExceptionAsync()
{
 await Task.Yield();
 throw new Exception("Hey");
}

gets lowered to

[System.Runtime.CompilerServices.NullableContext(1)]
[CompilerGenerated]
internal static Task <<Main>$>g__DoWorkWithoutAwaitAsync|0_0()
{
 return <<Main>$>g__ThrowExceptionAsync|0_1();
}

[System.Runtime.CompilerServices.NullableContext(1)]
[AsyncStateMachine(typeof(<<<Main>$>g__ThrowExceptionAsync|0_1>d))]
[CompilerGenerated]
internal static Task <<Main>$>g__ThrowExceptionAsync|0_1()
{
 <<<Main>$>g__ThrowExceptionAsync|0_1>d stateMachine

= default(<<<Main>$>g__ThrowExceptionAsync|0_1>d);

 stateMachine.<>t__builder = AsyncTaskMethodBuilder.Create();
 stateMachine.<>1__state = -1;
 stateMachine.<>t__builder.Start(ref stateMachine);
 return stateMachine.<>t__builder.Task;
}

stateMachine

Eliding await
try
{
 await DoWorkWithoutAwaitAsync();
}
catch (Exception e)
{
 Console.WriteLine(e);
}

static Task DoWorkWithoutAwaitAsync()
 => ThrowExceptionAsync();

static async Task ThrowExceptionAsync()
{
 await Task.Yield();
 throw new Exception("Hey");
}

• Exceptions don’t bubble up - they are stored on the Task object

• But why isn’t the caller part of it?

gets lowered to

try
{
 YieldAwaitable.YieldAwaiter awaiter;
 // Here is some other stuff
 awaiter.GetResult();
 throw new Exception("Hey");
}
catch (Exception exception)
{
 <>1__state = -2;
 <>t__builder.SetException(exception);
}

“A stack trace does not tell
you where you came from.

A stack trace tells you

where you are going next.” - Eric Lippert

Eliding await
try
{
 await DoWorkWithoutAwaitAsync();
}
catch (Exception e)
{
 Console.WriteLine(e);
}

static Task DoWorkWithoutAwaitAsync()
 => ThrowExceptionAsync();

static async Task ThrowExceptionAsync()
{
 await Task.Yield();
 throw new Exception("Hey");
}

Eliding await
try
{
 await DoWorkWithoutAwaitAsync();
}
catch (Exception e)
{
 Console.WriteLine(e);
}

static Task DoWorkWithoutAwaitAsync()
 => ThrowExceptionAsync();

static async Task ThrowExceptionAsync()
{
 await Task.Yield();
 throw new Exception("Hey");
}

Eliding await
try
{
 await DoWorkWithoutAwaitAsync();
}
catch (Exception e)
{
 Console.WriteLine(e);
}

static Task DoWorkWithoutAwaitAsync()
 => ThrowExceptionAsync();

static async Task ThrowExceptionAsync()
{
 await Task.Yield();
 throw new Exception("Hey");
}

Eliding await
try
{
 await DoWorkWithoutAwaitAsync();
}
catch (Exception e)
{
 Console.WriteLine(e);
}

static Task DoWorkWithoutAwaitAsync()
 => ThrowExceptionAsync();

static async Task ThrowExceptionAsync()
{
 await Task.Yield();
 throw new Exception("Hey");
}

• At the await boundary, we give control back to the caller.

• The caller does not await so we pass control to the next caller (that awaits
the call)

Eliding await
try
{
 await DoWorkWithoutAwaitAsync();
}
catch (Exception e)
{
 Console.WriteLine(e);
}

static Task DoWorkWithoutAwaitAsync()
 => ThrowExceptionAsync();

static async Task ThrowExceptionAsync()
{
 await Task.Yield();
 throw new Exception("Hey");
}

• Now the continuation gets called and throws the exception

• On the stack trace there is no DoWorkWithoutAwaitAsync anymore as the
method finished

Thanks to sharplab.io for making
my presentation possible ;)

And of course: You <3

http://sharplab.io

